удк 629.782

А.Б.РАССАМАКИН, В.А.РОГАЧЕВ, С.М.ХАЙРНАСОВ, Ю.В.ПЕТРОВ

ЭКСПЕРИМЕНТАЛЬНОЕ И ЧИСЛЕННОЕ ИССЛЕДОВАНИЯ ТЕПЛОВЫХ РЕЖИМОВ МИКРОСПУТНИКА

Вступление

Современный уровень развития науки в значительной степени достигнут благодаря интенсивному освоению космоса и использованию в последние десятилетия результатов космических исследований. Для изучения научно-технических проблем могут быть применены разнообразные космические аппараты и оборудование, которые позволяют проводить научные наблюдения и эксперименты в разных сегментах космического пространства.

В настоящее время применение микроспутников (МС), масса которых не превышает 100 кг, рассматривается как наиболее перспективное направление в изучении окружающей среды и глобального мониторинга Земли. Преимуществом МС является его небольшая стоимость, возможность проведения за короткое время серии исследований поверхности и атмосферы Земли во многих местах, причем одновременно.

С развитием космической техники особенное значение приобретает проблема обеспечения надежности и повышения срока активного существования космических аппаратов (КА). Одним из основных факторов, определяющих надежность и долговечность КА, является стабильность его теплового режима. Современная бортовая электронная аппаратура, как правило, работает в ограниченном температурном диапазоне. Отклонение температуры от допустимой на несколько градусов может привести к увеличению на порядок частоты отказов, изменению электрических характеристик аппаратуры, снижению ее ресурса и к разным функциональным нарушениям.

Тепловые взаимодействия КА на орбите с внешними источниками теплоты и космическим пространством изучены достаточно хорошо и определяются расчетными методиками, алгоритмами и программами [1-3] с относительно высокой степенью точности. Однако достоверная информация о внутренних тепловых связях электронных приборов между собой и элементами конструкции КА может быть получена, в основном, только методами наземной тепловой экспериментальной отработки [4-5, 7, 8].

В научно-исследовательском лабораторном центре НТУУ "КПИ" были проведены термовакуумные испытания теплового макета первого Украинского микроспутника МС-1-ТК-ТВ [7, 8], разработанного и изготовленного в КБ "Южное" и выполнено расчетно-теоретическое моделирование его тепловых режимов в пакете прикладных программ "TRASSA" [2].

Средства и методика моделирования космического пространства и КА в наземных условиях

Установка ТВК-2,5 [7, 8] в соответствии с общепринятыми требованиями [4-6], которые являются необходимыми и достаточными для полного исследования тепловых режимов космической техники, воспроизводит основные факторы космического пространства: вакуум, низкую температуру и высокую степень черноты теплового поглощения окружающей среды.

В состав лабораторного стенда ТВК-2,5 (рис. 1) входят: вакуумная система, криогенная система с криоэкранами (КЭ), имитатор солнечного излучения оптический (ИСИО), имитатор излучения Земли (ИИЗ), имитаторы внешнего и внутреннего излучающего теплового взаимодействия поверхностей и приборов КА в виде тонкопленочных напыленных электрообогревателей, автоматизированная многоканальная система измерения температуры (АМСИТ), блок измерения интенсивности излучения и опорно-подвесная система КА.

Для определения температур элементов объекта исследования в качестве первичных измерительных преобразователей используются контактные термоэлектрические и терморезистивные датчики, прошедшие метрологическую аттестацию.

Термоэлектрическими датчиками являются медь-константановые термопары диаметром проводов 0,16/0,1 мм. В качестве терморезистивних датчиков используются термопреобразователи TCM 2-3 (ПСВ 14242882-98).

ISSN 1813-5420

Енергетика: економіка, технології, екологія

Работа системы происходит под управлением программного обеспечения "RB-КПИ-РС", которое разработано в НТУУ "КПИ" и ориентировано на представление эффективных и оперативных методов управления системой, предварительную обработку и графическое отображение экспериментальных данных. Пакет обеспечивает интерактивное геометрическое введение исходной информации и выведение результатов эксперимента в файл и на экран ПЭВМ.

a)

б)

- Рис. 1. Моделирующая экспериментальная установка ТВК-2,5
 - а) общий вид;
 - б) структурно- функциональная схема:
 - 1 вакуумная камера; 2 МС; 3 верхняя подвижная крышка;
 - 4 рама, 5 тележка; 6 насос форвакуумный;
 - 7 насос турбомолекулярный; 8 насос магниторазрядный;
 - 9 насос диффузионный; 10 КЭ

Основные технические характеристики установки приведены в табл. 1.

Таблица 1

Основные технические характеристики установки ТВК-2,5

Характеристика	Величина
Полезный объем вакуумной камеры	2,5 м ³
Вакуум	до 10 ⁻⁶ мм рт.ст
Хладоноситель	жидкий азот
Минимальная температура поверхностей КЭ	80 K
Относительная степень черноты КЭ	\geq 0,92
Диапазон плотности потоков излучения имитаторов	10004000 Вт/м ²
Диапазон длин волн ИСИО	0,252,5 мкм
Габаритные размеры стенда	8x8x3 м ³

Теоретически-расчетное моделирование тепловых режимов микроспутника

МС состоит из следующих основных узлов: корпуса, четырех панелей батареи фотоэлектрической (БФ) и гравитационного стабилизатора (ГС).

Корпус МС монтируется последовательным закреплением к основанию и друг к другу: рамочных модулей (РМ) с приборами БПУ, ПАРК, ПССН, БСТИ, БЦВК, АИ817, АИ308, МБТК; плиты промежуточной; отсека научной аппаратуры (НА); плиты установочной. Габаритные размеры корпуса составляют 380х380х521 мм

К боковым граням основания с помощью пружинных поворотных механизмов прикреплены четыре панели БФ, в рабочем состоянии они размещены под углом 32,5° к продольной оси корпуса (рис.2).

Для численного расчета теплового режима МС в условиях орбитального полета и термовакуумных испытаний используется программно-вычислительный комплекс «TRASSA» [5]. Качественный уровень пакета определяется программной системой ASTRA для автоматизированного формирования оптическо-геометрической модели МС и программной системы TRANT для расчета тепловых режимов спутника с активными средствами

терморегулирования. В своей основе пакет имеет математическую модель, которая описывает тепловое взаимодействие приборов, узлов, элементов конструкции КА и окружающей среды.

Для расчета внешних тепловых влияний на поверхность спутника и элементы конструкции (рис.2) используется следующая информация о его ориентации и параметрах орбиты:

- спутник выводится на круговую солнечно-синхронную орбиту;
- высота орбиты 700 км;
- наклонение i=90°;
- ориентация в орбитальной системе координат, ребром (плоскость I-III) по направлению полета и продольной осью симметрии – радиусом-вектором на Землю;
- конструктивно-компоновочная схема;
- оптические коэффициенты внешних поверхностей спутника и его элементов.

Все внешние поверхности корпуса имеют величины оптических коэффициентов поглощения и черноты: $A_s=0,45$, $\varepsilon=0,90$, внешняя поверхность ГС имеет $A_s=0,90$, $\varepsilon=0,90$. Внутренние поверхности РМ и экранов имеют $\varepsilon=0,82$. Для рабочих поверхностей БФ $A_s=0,88$, $\varepsilon=0,88$, для тыльных поверхностей - $A_s=0,60$, $\varepsilon=0,97$.

При термовакуумних испытаниях МС помещается в камеру вертикально вдоль ее оси на подвесной опоре, к которой он крепится через теплоизолирующие шайбы (рис.1).

Внешние тепловые потоки, поглощаемые элементами конструкции MC на орбите, и внутренние тепловыделения приборов имитируются в камере пленочными электрообогревателями, наклеиваемыми на поверхности конструкции и приборов MC.

Данные тепловых нагрузок, места установки и площади облучения пленочными электрообогревателями во время проведения экспериментальных исследований МС приведены в табл. 2.

Таблица 2

Основные геометрически	е характеристики	и тепловые нагрузки	РМ МС в экспериментах
------------------------	------------------	---------------------	-----------------------

Наименование		Габариты электрообо - гревателя, мм	Тепловая нагрузка РМ, Вт			
рамочного модуля прибора, поверхности МС	Датчик температуры		минимальный режим Q _{min}	максимальный режим Q _{max}		
РМ МБТК	T25,T26,T27	50×150	-	9		
РМ АИ 308	T22,T23,T24	100×150	-	11		
РМ АИ 817	T19,T20,T21	150×150	-	19		
РМ БЦВК	T16,T17,T18	150×150	10	11		
РМ БСТИ	T13,T14,T15	150×150	-	16		
РМ ПССН	T10,T11,T12	140×70	3	3		
РМ ПАРК	T7,T8,T9	-	3,2	3,2		
РМ БПУ	T4,T5,T6	115×145	2	2		
Тыльные поверхности панелей БФ:						
1П (I-IV)	T38,T39	380×488	167	167		
2П (IV-III)	T40,T41	380×488	167	167		
3П (III-II)	T42,T43	380×488	17	17		
4П (II-I)	T44,T45	380×488	17	17		
Тыльные поверхности экранов КР и НА (грани):						
I-IV	T33,T35,T36,T37	380×510	57	57		
IV-III	T34	380×510	57	57		
III-II	T31	380×510	8	8		
II-I	T32	380×510	8	8		
Поверхность макета ГС		70×400	15	15		
Поверхность плиты установочной	T28,T29,T30	76×115 75×118	13	13		
Поверхность основания	T1,T2,T3	-	_	-		

Отделение НА, включающее плиты установочную толщиной 4 мм и промежуточную толщиной 2,5 мм, имеет высоту 120 мм. Высота основания составляет 33 мм.

ГС имеет внешний диаметр 142 мм, высоту от поверхности основания 104 мм и толщину стенки 1,5 мм.

Элементы конструкции выполнены из материала АМГ6, коэффициент теплопроводности которого составляет 92 Вт/(м К). Толщина боковых стенок и перегородок РМ, а также стенок отделения НА равняется 1,5 мм.

Для расчета теплового режима микроспутника на орбите разработана математическая модель, которая описывает тепловое взаимодействие приборов, узлов и элементов конструкции.

Математическая модель сложного теплообмена в космическом аппарате представлена одномерным уравнением сохранения энергии на тепловом графе. Температура T_i(x,t) расчетного элемента, что соответствует i-й дуге, определяется уравнением вида:

$$(\rho cF)i\left(\frac{\partial T_{i}}{\partial t}\right) = \partial \left[\left(\lambda F\right)i\left(\frac{\partial T_{i}}{\partial x}\right)\right] / \partial x - \Lambda k_{i}\left(\frac{\partial T_{i}}{\partial x}\right) + q\left(T_{i}, x, t\right) + \sum_{\forall n \to i} \Lambda_{ni}\left(T_{n} - T_{i}\right)\right]$$

$$0 \le x \le L_i; i = 1, 2, ...Kd$$

где *t*, *x* - временная и пространственная координаты;

L - длина дуги;

 ρ , *c*, λ - плотность, изохорная удельная теплоемкость и коэффициент теплопроводности; F = F(x) - площадь поперечного сечения;

Ак - коэффициент конвективной проводимости, обусловленной наличием теплоносителя или механическим переносом теплоты при вращении;

q(Ti, x, t) - линейная плотность внутреннего тепловыделения;

∀п→i - означает: по всем п-ым дугам, имеющим поперечные связи с i-ой дугой.

Левая часть уравнения представляет временной член, а слагаемые в правой части последовательно диффузионный, конвективный, источниковый и сопряженный члены. Диффузионный член учитывает продольный теплоперенос на дуге графа расчетного элемента теплопроводностью, а сопряженный - поперечный теплоперенос между дугами графов расчетных элементов тем же механизмом.

Решение задачи, определяющей температурный режим космического аппарата, реализуется на графах конечно-разностным методом. При этом используется неявная схема первого порядка по временной и пространственной координатах.

Геометрическая модель MC - ТВК построена с 58-ю узлами (конструктивами), которые декомпонованы на 264 расчетные грани с заданными степенями черноты рабочих сторон, принимающими участие в радиационном теплообмене (рис.2).

Для того, чтобы избежать избыточной детализации, толщины стенок РМ, ГС, плит, экранов и панелей БФ принимаются бесконечно тонкими, таким образом, что созданная геометрическая модель МС представлялась фигурой оболочкового типа со стенками нулевой толщины.

Рис. 2 Схема расположения приборной массы микроспутника и его разбивка на узлы

Задачами расчета теплового режима МС являются:

Енергетика: економіка, технології, екологія

- вычисление внешних излучающих потоков, которые поглощаются элементами МС в орбитальном полете и определяют мощность электрообогревателей в термовакуумных испытаниях;
- вычисление стационарного температурного поля в макете МС при испытаниях в термовакуумной камере. При этом рассматриваются варианты минимальной и максимальной температуры стенок ТВК для двух случаев тепловыделения аппаратуры МС: дежурный режим - Q_{min} и режим работы аппаратуры по наиболее напряженной программе - Q_{max}.

Лучистые связи между поверхностями рассчитываются в пакетном режиме автоматически, так как эти поверхности задаются с помощью геометрической модели, создаваемой программой (рис. 3).

Для расчета теплового режима MC используется модель сосредоточенных параметров. Расчетными элементами в этой модели служат прямоугольные пластины, которые согласовываются с гранями геометрической модели MC и образуют систему контрольных ячеек с расчетными узлами в центре пластин. Центральному расчетному узлу предоставляются все параметры контрольной ячейки: осредненная по этой ячейке температура, поглощенные и излучающие потоки, тепловые выделения от источников. Кроме центральных расчетных узлов выводятся узлы стыковки двух или трех контрольных ячеек. В стыкующих узлах реализуется лишь распределение кондуктивних тепловых потоков между расчетными ячейками. Центральные и стыкующие узлы образуют пространственную ортогональную неравномерную расчетную сетку.

Рис. 3. Схема кондуктивних тепловых связей между расчетными узлами микроспутника

Результаты экспериментального моделирования тепловых режимов микроспутника

Суммарное реальное время проведения исследований макета МС составляло 23 часа и включало следующие этапы: откачку ТВК-2,5 с обеспечением заданного вакуума, заливку (захолаживание) системы и КЭ жидким азотом, выход на стационарный тепловой режим МС, размораживание (расхолаживание) системы и КЭ после проведения исследований.

На рис. 4 приведена результатная гистограмма распределения температур (температурное поле) в приборных модулях и элементах конструкции МС в стационарном режиме при минимальной внутренней тепловой нагрузке Q_{min} и внешнем тепловом воздействи (излучение Солнца) q_s со стороны ребра корпуса IV.

Рис. 4. Распределение температур по приборным модулям и конструкции МС в стационарном режиме при минимальном тепловом рассеивании и солнечном освещении со стороны ребра IV

Из рис.4 видно, что значения температур приборного отделения МС в основном положительны. Найбольший нагрев наблюдается в средней части корпуса, расположенной в области РМ приборов БСТИ, БЦВК с показаниями датчиков Т14, Т17, температуры которых не превышают плюс 16°С. Для крайних компонентов корпуса МС, основания и плиты установочной характерны главным образом отрицательные температуры, соответственно, минус 5°С (датчики T1, T2, T3) и от минус 5°С до плюс 4°С (датчики T28, T29, T30). Температурное поле внутренних поверхностей экранов кабельных разъемов (КР) и отсека НА, расположенных со стороны внешнего теплового влияния, находится в диапазоне положительных величин от плюс 19°С до плюс 43°С (датчики T33, ..., T37). Температура экранов НА, расположенных с противоположной теневой стороны (ребро II, термодатчики T31, T32), имеет отрицательные значения, изменяющиеся в диапазоне от минус 15°С до минус 13°С.

Температура освещаемых панелей БФ 1П и 2П изменяется в диапазоне от плюс 35°С до плюс 50°С (датчики T38, ..., T41). Панели 3П и 4П, расположенные с теневой стороны, имеют отрицательные температуры (термодатчики T42, ..., T45), которые изменяются в диапазоне от минус 34°С до минус 57°С. Причем существенно перегреваются участки панелей, которые находятся ближе к граням корпуса MC, а переохлаждаются крайние участки, удаленные на фиксированные расстояния от граней корпуса (рис.1) и потому имеющие лучшие условия для теплосброса. В среднем перепад температур вдоль длинных сторон тыльных поверхностей всех четырех панелей БФ составляет примерно 10°С. Из анализа экспериментальных данных, приведенных на рис. 4, следует, что пространственное температурное поле конструкции и приборов MC охватывает достаточно широкие эксплуатационные пределы изменений, при этом панели БФ находятся в наиболее тяжелых температурных условиях.

На рис. 5 приведены графики изменений температур во времени поверхностей МС и приборов при максимальной внутренней тепловой нагрузке Q_{max} и установившемся режиме испытания МС. Включение приборов БСТИ, БЦВК, АИ817, АИ308, МБТК на 11 минут при максимальной тепловой нагрузке отвечает на графиках координате времени 19:37:40. Наибольшие температурные всплески относятся к РМ АИ 817 (T19, T20, T21) с максимально рассеиваемой тепловой мощностью прибора. Импульсная температурных всплесков остальных пиковых приборов включения прибора на 5...6°С. Уровни температурных всплесков остальных пиковых приборов менее существенны и не превышают 2°С.

Анализ термоциклограмм на рис.5 показывает, что законы распределений температур зависят не только от величины рассеиваемой мощности и условий теплообмена, но и от длительности действия источника нагрева. После отключения указанных приборов в течение четырехчасовой паузы, которая предшествует следующему их включению, тепловой режим МС полностью устанавливается. За время сравнительно короткого включения тепловой поток пиковых приборов не успевает распространиться и повлиять на температурные поля соседних РМ и конструкцию МС в целом. Вывод подтверждается данными рис. 6, е, ж, где показаны распределения температуры во времени на поверхностях экранов КР, НА, панелей БФ. Из графиков видно, что в период включения приборов, которое отвечает режиму максимальной тепловой нагрузки Q_{max}, температурные поля поверхностей экранов и панелей БФ остаются неизменными. Таким образом,

Енергетика: економіка, технології, екологія

ISSN 1813-5420

режим максимального нагрева аппаратуры носит локальный и кратковременный характер, который влияет лишь на тепловые режимы приборов, включаемых на короткий срок.

Результаты математического моделирования тепловых режимов микроспутника и сопоставления их с экспериментальными данными

Результаты математического моделирования в виде температурных полей MC получены для двух тепловых режимов, которые были реализованы в экспериментах – при максимальной Q_{max} и минимальной нагрузках Q_{min} элементов MC при солнечном освещении со стороны ребра IV (рис.4).

Сравнения расчетных и экспериментальных результатов исследований приведены в табл. 3.

Как видно из табл. 3 существуют расхождения между расчетными и экспериментальными значениями температур в узлах МС. Например, расчетное значение температуры основания МС приблизительно на 6°С выше экспериментального в результате завышенного значения теплопередачи кондуктивной связи основание – ГС, на котором установлен пленочный нагреватель. В действительности переток теплоты осуществляется не по всей плоскости поперечного сечения ГС, а по трем контактным точкам его крепления к основанию. Экспериментальное значение температуры экрана отделения НА на 4°С выше расчетного. Экспериментальное значение температуры экрана разъемов приблизительно на 13°С выше расчетного. Это может быть объяснено тем, что в реальности боковые стенки РМ со стороны экрана КР затеняются большим количеством массивных разъемов с соединительными кабелями, что приводит к тепловой асимметрии.

Таблица 3

Сравнения экспериментальных и расчетных данных								
	Темп	ература, °С	Температура, °С					
Блок МС	Расчет	Експеримент	Расчет	Експеримент				
	\mathbf{Q}_{\min}	Q _{min}	Q _{max}	Q _{max}				
Основание	-4.55	-11.10	0.47	-5.00				
Рамочные модули:								
БЖК	1.90	-3.00	10.71	12.50				
ПАРК	3.49	-0.70	14.31	17.50				
ПССН	4.95	0.46	19.94	23.10				
БСТИ	5.93	5.10	29.93	16.30				
БЦВК	9.99	9.10	31.64	24.80				
АИ 817	1.52	-2.60	30.30	16.10				
АИ 308	-0.74	-4.40	23.91	14.70				
МБТК	-2.31	-5.50	17.57	10.50				
Плита установочная	6.10	3.00	14.88	0.60				
Отсек НА	-3.30	-5.10	13.11	1.40				
Батареи фотоэлектрические:								
1П (плоскость I-IV)	73.10	48.60	75.68	48.10				
2П (плоскость IV-III)	35.57	27.10	39.77	41.50				
3П (плоскость III-II)	-41.40	-36.00	-37.28	-35.70				
4П (плоскость II-I)	-42.19	-40.50	-35.99	-33.40				
Экран КР	19.14	-10.10	29.02	36.58				

Сравнения экспериментальных и расчетных данных

В целом расчетные значения температур PM и перепады температур между ними несколько завышены. Чтобы устранить обнаруженные разбросы с экспериментом, необходимо в тепловой модели скорректировать: значения тепловой проводимости кондуктивных связей центральные узлы PM - боковые стенки PM, приблизительно в 2 раза уменьшить степень черноты внутренней поверхности экрана KP, уточнить площади теплового контакта узлов MC.

Выводы

- 1. Завышение расчетных данных относительно экспериментальных обусловлено тем, что:
 - численная модель в отличие от эксперимента проводит расчет с учетом условий окружающей среды при реальном движении микроспутника по заданной орбите, то есть при динамическом изменении величин факторов космического пространства;
 - солнечное излучение в эксперименте имитируется контактными поверхностными нагревателями, что также влияет на расхождения между расчетными и экспериментальными значениями.

Енергетика: економіка, технології, екологія

Пути решения этих несогласованностей определяются последующим усовершенствованием численного моделирования МС при воссоздании в нем условий, создаваемых термовакуумным стендом ТВК-2,5. Это касается в первую очередь поддержания в испытаниях стационарных условий окружающего "холодного" пространства и переход от пленочных нагревателей, имитирующих солнечное излучение, к применению другой методики, например, освещению внешних поверхностей МС с помощью ИСВО и ИВЗ.

- Существуют расхождения в величинах тепловых связей между элементами PM, полученных в эксперименте и расчете. Наибольшей проблемой является поиск и определение действительных тепловых связей между элементами MC. Для ее решения необходимо провести ряд расчетных, а по возможности экспериментальных работ, включая и повторные термовакуумные испытания.
- 3. По результатам численного моделирования имеем большие разбросы в температурных значениях экранов КР, что обусловлено сложностью конструкции данного элемента и воссоздания его в тепловой модели. Для этого необходимы дополнительные экспериментальные данные и результаты расчета по более точному определению характера кондуктивных связей и теплообмена излучением в зоне КР.

Изложенные рекомендации направлены не только на уточнение и корректировку исходной математической модели, но и на последующее совершенствование и оптимизацию узлов и конструкции МС и ТВК.

Литература

- 1. Копяткевич Р.М. и др. Тепловые режимы радиоэлектронных приборов космических аппаратов // Тр. Второй российской национальной конференции по теплообмену, 1998, т.1, С.129-132.
- 2. Кислов А.М. и др. Пакет программ для расчета теплового режима приборных отсеков космического аппарата. НТО. НАНУ ФТИНТ. Харьков. 1995. 114с.
- Хохулин В.С. Комбинаторный анализ теплового режима космических конструкций в одномерном приближении // Тр. Второй российской национальной конференции по теплообмену, 1998, т.1, С.169-172.
- 4. Козлов Л.В. и др. Моделирование тепловых режимов космического аппарата и окружающей его среды М.: Машиностроение, 1971. 382с.
- 5. Шеволдин В.А., Гридин А.С. Комплексное физическое моделирование условий эксплуатации оптико-электронных приборов // Оптический журнал, 1994, №1, С.25-30.
- 6. Мартынов Д.А. Моделирование тепловых воздействий при проведении испытаний оптикоэлектронных приборов в вакууме // Оптический журнал, 1994, №11, С.23-26.
- 7. Рассамакин Б.М. и др. Экспериментальное моделирование тепловых режимов малогабаритных космических аппаратов и их внешних тепловых потоков. Часть 1. Термовакуумная установка ТВК-2,5 // Космічна наука і технологія, 2002, т.8, №1, С.37-41.
- Рассамакин Б.М и др. Экспериментальное моделирование тепловых режимов малогабаритных космических аппаратов и их внешних тепловых потоков. Часть 2. Результаты тепловакуумных испытаний макета микроспутника типа MC-1-TK-TB// Космічна наука і технологія, 2002, т. 8, № 4, С. 3-10.