Ο.Μ.ΤΕΡΕΧ, Ο.Β.СΕΜΕΗЯΚΟ, Ι.Β.ΠΥЗΑΗΟΒ

УЗАГАЛЬНЕНИЙ МЕТОД РОЗРАХУНКУ КОНВЕКТИВНОГО ТЕПЛООБМІНУ КОРИДОРНИХ ПАКЕТІВ ПЛОСКО-ОВАЛЬНИХ ТРУБ З НЕПОВНИМ ОРЕБРЕННЯМ

Вступ

В різних галузях сучасної техніки широко використовуються різноманітні теплообмінні пристрої, найбільш поширеними елементами яких є криволінійні поперечно-обтічні тіла. До них відносяться круглі, прямокутні, овальні, плоско-овальні труби, а також тіла інших геометричних форм.

Ефективним заходом до збільшення компактності теплообмінника є використання розвинених поверхонь у вигляді ребер різним способом закріплених на несучій трубі.

При конструюванні теплообмінних пристроїв використовуються різні компонування труб в пакеті. Найчастіше застосовується шахове і коридорне компонування.

Використання профільованих труб з неповним поперечним оребренням [1] пов'язано із прагненням інтенсифікувати теплообмін за рахунок підвищення швидкості теплоносія внаслідок зменшення опору пучків зручнообтічної форми несучої труби порівняно з пучками із круглоребристих труб.

Однак під час проектування теплообмінних пристроїв з таких труб виникають труднощі при розрахунку їх теплоаеродинамічних характеристик.

В НТУУ «КПІ» проведені експериментальні дослідження конвективного теплообміну пакетів плоско-овальних поперечно-оребрених труб. Метою даної статті є: узагальнення отриманих дослідних даних, виявлення закономірностей теплообміну, розробка методу розрахунку

№1 - 2009

конвективного теплообміну коридорних пакетів плоско-овальних труб з неповним поперечним оребренням.

1 Методика досліджень

Дослідження тепловіддачі глибинних рядів коридорних пакетів плоско-овальних труб з неповним оребренням (рис.1) при поперечному їх обтіканні повітряним потоком здійснювалися на аеродинамічній трубі розімкнутого типу. Методика досліджень детально описана в роботі [2]. Досліди проведені для труб двох типів (табл.1). Всього експериментами охоплено 12 пучків, які відрізнялись між собою кроковими характеристиками S_1, S_2 і коефіцієнтами оребрення ψ (табл.2).

Рис.1. Коридорний пакет плоско-овальних труб з неповним оребренням

Пакет складався залежно від крокових характеристик з 3 - 4 труб ($Z_1 = 3 - 4$) в одному із семи поперечних рядів ($Z_2=7$). Визначення середньоповерхневих конвективних коефіцієнтів тепловіддачі здійснювалося за результатами вимірювань за допомогою 17 мідь-константанових термопар температурного поля ребра та стінки несучої труби біля кореня ребра труби-калориметра. Труба-калориметр знаходилася у 6-му за ходом потоку поперечному ряді пакету.

Таблиця 1	l
-----------	---

Найменування	Позначення	Труба тип 1	Труба тип 2
Поперечний розмір несучої труби	<i>d</i> _{<i>l</i>} , мм	15.0	15.0
Подовжній розмір несучої труби	d_2 , MM	30.0	42.0
Висота ребер	<i>h</i> , мм	22.0	23.0
Крок ребер	<i>t</i> , MM	3,65	3.75
Товщина ребер	δ, мм	1,0	0.8
Довжина ребра	<i>l</i> , мм	48.5	55.5
Відносне видовжування профілю	d_2/d_1	2.0	2.87
Коефіцієнт оребрення	ψ	17.68	15.16

Геометричні характеристики оребрених труб

За визначальний розмір в числах Нуссельта Nu та Рейнольдса Re приймався мінімальний поперечний розмір несучої труби d_1 . Теплофізичні константи, що входять у вирази для розрахунку чисел Nu і Re, відносились до середньобалансової температури повітря t_n у ряді, в якому знаходився калориметр.

За визначальну швидкість повітря в числах Re приймалася швидкість в найбільш вузькому перетині пакета.

2 Результати досліджень та їх аналіз

Дослідження теплообміну пакетів плоско-овальних труб виконано в зоні змінювання чисел Рейнольдса $\text{Re}_d = (3...20) \cdot 10^3$. Результати цих досліджень подані на рис.2, 3 і свідчать, що дослідні дані досить добре узагальнюються степеневою залежністю виду:

$$\operatorname{Nu}_{k} = C_{q} \cdot \operatorname{Re}_{d_{1}}^{m}.$$
(1)

Аналіз експериментальних даних виявив помітне змінювання нахилу залежності $\lg \operatorname{Nu}_k = f(\lg \operatorname{Re}_d)$ (показника степеня *m*) як у межах пакетів кожного типу труб з постійною геометрією оребрення, так і для пакетів з однаковими відносними кроками різних типів труб.

Енергетика: економіка, технології, екологія

Окрім цього можна відмітити, що на інтенсивність теплообміну більше впливає поздовжній крок між трубами, ніж поперечний, що добре ілюструють рис.2, 3.

Номер пакета	$S_{\!_1}$, мм	$S_{ m 2}$, мм	S_{1}/S_{2}	Ψ	т	C_q
		Плоско-ова.	льна труба	типу 1		
1	66	60	1.100	17.68	0.675	0.103
2	66	75	0.88	17.68	0.665	0.115
3	66	90	0.733	17.68	0.660	0.124
4	66	120	0.550	17.68	0.660	0.128
5	86	60	1.433	17.68	0.720	0.062
6	105.6	60	1.760	17.68	0.720	0.050
		Плоско-ова.	льна труба	типу 2		
7	66	60	1.100	15.16	0.626	0.180
8	66	75	0.88	15.16	0.615	0.196
9	66	90	0.733	15.16	0.610	0.206
10	66	120	0.550	15.16	0.610	0.215
11	86	60	1.433	15.16	0.670	0.110
12	105.6	60	1.760	15.16	0.670	0.085

Геометричні характеристики коридорних пакетів

Спроби зв'язати величину т з відомими характеристиками розміщень труб в коридорних пакетах S1/S2, ф показали, що такі залежності простежуються, причому кращу кореляцію показників степеня забезпечує параметр S_l/S_2 .

Рис.2. Результати дослідження тепловіддачі пучків труб типу 1

Рис.3. Результати дослідження тепловіддачі пучків труб типу 2

1 – пучок №1; 2 - №3; 3 - №4; 4 - №5; 5 - №6

1 – пучок №7; 2 - №9; 3 - №10; 4 - №11; 5 - №12

На рис.4 нанесені дослідні значення т залежно від S1/S2. Дані для пакетів з постійною геометрією ребристих труб різних типів, яку можна досить повно охарактеризувати величиною коефіцієнта оребрення у, об'єднуються близькими по конфігурації кривими. Вони мають дві пологих ділянки, в межах яких значення *m* практично постійні, та одну більш похилу, де значення *m* значно зростають із збільшенням параметра розміщення S_1/S_2 . Криві $m = f | \psi$, = const зміщуються вверх в міру зростання коефіцієнта оребрення. Перепад значень *m* на кінцях

Таблиця 2

дослідженого інтервалу S_1/S_2 для кривих практично однаковий і близький до 0.06.

Загальний перепад m в дослідженому інтервалі геометричних характеристик дорівнює 0.11. Геометрія оребрених плоско-овальних труб і параметри розміщення труб в пакеті рівною мірою впливають на величину показника степеня, що свідчить про необхідність включення в узагальнюючу залежність для m обох впливаючих факторів.

З огляду на сказане вище криві $m = f(S_1/S_2, \psi)$ при $\psi = const$ можна описати як і для шахових пакетів [4] функцією виду :

$$m = a_1 th \left\{ k_1 \left[\left(\frac{S_1}{S_2} \right) - b_1 \right] \right\} + m_0 .$$
⁽²⁾

Коефіцієнт a_1 при гіперболічному тангенсі для коридорних пакетів дорівнює 0.03. Значення b_1 являє собою постійну величину, яка дорівнює 1.2, і практично не залежить від коефіцієнта оребрення. З огляду на те, що перепад значень *m* в розглянутому інтервалі змінення коефіцієнтів оребрення складає малу величину, залежність $m_o = f(\psi)$ можна апроксимувати лінійною функцією: $m_0 = 0.02 \cdot \text{m} + 0.34$. (3)

Коефіцієнт k_1 є величиною постійною і рівною 6 ($k_1 = 6$). Підставивши всі вище згадані коефіцієнти, отримуємо вираз (4) для розрахунку величини *m*:

$$m = 0.03th \left\{ 6 \left[\left(\frac{S_1}{S_2} \right) - 1.2 \right] \right\} + \left(0.02 \cdot \Psi + 0.34 \right).$$
(4)

Наведені дані свідчать про те, що зв'язок між *m* та S_1/S_2 визначається законом, який припускає наявність ділянок слабкої і сильної залежності між цими величинами. Якщо вибраний для дослідження діапазон параметра розміщення S_1/S_2 відносно невеликий - $S_1/S_2 < 1.0$, то він може включати в себе більшою мірою ліву пологу частину кривої $m = f(S_1/S_2, \psi), \psi = const$. В цьому випадку можна дійти висновку про незалежність показника степеня *m* від параметра розміщення течії в пакетах труб [3], рівень збурення потоку, що омиває труби глибинних рядів, значною мірою залежить від розміщення труб. Якщо припустити, що між рівнем збурення потоку і величиною *m* має місце пряма відповідність, то міркування щодо залежності рівня збурення від S_1/S_2 можна віднести до залежності *m* від S_1/S_2 . Для зони з найбільшим рівнем збурення характерні підвищені значення величини *m*. Таким чином, коли S_1/S_2 велике і поверхня глибинних рядів практично повністю омивається сильно збурения потоком, значення показника степеня підвищене і відповідає рівню правої пологої ділянки кривих рис.4. Зниження рівня збурення потоку при зменшенні S_1/S_2 призводить до зниження значення *m* до рівня лівої пологої ділянки кривих $m = f(S_1/S_2, \psi), \psi = const$.

Дослідні значення коефіцієнта C_q залежно від параметра S_l/S_2 показані на рис.5. Характер розташування точок, а також той факт, що коефіцієнт кореляції між *m* та C_q дорівнює (-1), дозволяє припустити, що в основі залежності $C_q = f(S_1 / S_2, \psi)$ лежить функція типу (2), але з протилежним знаком:

$$C_q = -a_2 th \left\{ k_2 \left[\left(\frac{S_1}{S_2} \right) - b_2 \right] \right\} + C_0 .$$
⁽⁵⁾

В даному випадку для коридорних пучків коефіцієнт a_2 вже не являється константою, а як і C_o залежить від параметрів оребрення. Аналіз даних показав, що $\frac{C_o}{a_2} \approx 2$. В межах змінення коефіцієнта оребрення від 15 до 18 коефіцієнт a_2 з достатньою точністю можна описати лінійною функцією

$$y_2 = 0.26 - 0.0123 \cdot \text{III}. \tag{6}$$

Коефіцієнт $b_2 \approx b_1 = 1.2, k_2 = 3.$

Остаточно співвідношення (5) для розрахунку C_q зводиться до виду :

$$C_{q} = \left\{ 2 - th \left[3 \left(\frac{S_{1}}{S_{2}} - 1.2 \right) \right] \right\} \cdot \left(0.26 - 0.0123 \psi \right).$$
(7)

Таким чином, розрахунок конвективного теплообміну глибинних рядів коридорних пакетів плоско-овальних труб з неповним оребренням для коефіцієнта оребрення $\psi = 15.3...18$ і параметра розміщення, що змінюється в діапазоні $S_1/S_2 = 0.55...1.76$ в області чисел Рейнольдса $\text{Re}_d = 3 \cdot 10^3$ 2 $\cdot 10^4$ пропонується виконувати за залежністю (1), де показник степеня *m* і коефіцієнт C_q визначаються за співвідношеннями (4) та (7) відповідно.

Рис.5. Залежність коефіцієнта C_q в формулі (1) від параметра розміщення S_1/S_2 1 - $\psi = 17.68$; 2 - $\psi = 15.16$; 3 – розрахунок за (7)

Підсумкова похибка розрахункових співвідношень (1), (4), (7) оцінювалася зіставленням дослідних і розрахункових чисел Нуссельта Nu_{∂} , Nu_{p} відповідно при значеннях числа Рейнольдса $Re_d = 3000$ і $Re_d = 20000$. Максимальна розбіжність між вказаними величинами склала ±10% (рис.6).

Рис.6. Оцінка точності узагальнюючих формул по теплообміну коридорних пакетів:

1 – Re_d = 3000; 2 – Re_d=20000 1-12 – номера пакетів згідно з табл.2

Для розширення області застосування розрахункових співвідношень на інші види газових теплоносіїв необхідно за аналогією роботи [5, 6] ввести у формулу подібності (1) число Прандтля у степені 0.4, після чого вона прийме вигляд :

$$Nu = 1.15 \cdot C_q \cdot Re_d^m \cdot Pr^{0.4} .$$
(8)

Отримані експериментальні дані дозволяють прослідкувати залежність інтенсивності тепловіддачі коридорних пакетів труб з постійними параметрами оребрення ($\psi = \text{const}$) від характеристики розміщення труб у пакеті S_1/S_2 . На рис. 7 показані дослідні дані Nu = $f(S_1 / S_2)$ для пакетів труб типів 1 і 2, взятих при Re_d =7000 і відповідні розрахункові криві, які отримані за формулою (1) з урахуванням залежностей (4) та (7). В межах дослідженої області значень параметра розміщення S_1/S_2 тепловіддача змінюється на 40 ... 50%. Криві мають не екстремальний спадний характер. В міру зростання S_1/S_2 інтенсивність теплообміну знижується.

1 - труби типу 3, ψ = 17.68; 2 - труби типу 4, ψ = 15.16; суцільні лінії – розрахункові криві

Інтенсивність теплообміну, як і очікувалося, знижується при зростанні коеффіцієнта оребрення ψ від 15 до 18 на 10...12%. До причин зниження інтенсивності тепловіддачі пакетів оребрених труб при зростанні ступеня їх оребрення слід віднести: зниження частки більш ефективної поперечно-омиваної поверхні ребристої труби і відповідне збільшення повздовжньоомиваної поверхні; зростання примежового шару на ребрі при зростанні його довжини.

Висновки

- Інтенсивність тепловіддачі коридорних пакетів плоско-овальніх труб залежить від геометрії ребристих труб і при варіюванні ступеня оребрення в межах ψ =15.3...18 змінюється на 10...12%.
- 2. В межах одного типу труб при варіюванні кроків труб (ψ= const S₁/S₂= var) інтенсивність теплообміну змінюється на 40...50 %.
- 3. Отримано нові узагальнювальні залежності для розрахунку теплообміну коридорних пакетів плоско-овальних труб з неповним оребренням, які враховують вплив на інтенсивність теплообміну як параметрів оребрення труб, так і крокових характеристик пакетів.
- 4. Отримані експериментальні дані, а також запропонована методика теплового розрахунку можуть бути застосованими при проектуванні і промисловому впровадженні нових високоефективних теплообмінних пристроїв із плоско-овальних труб з неповним оребренням.

Література

- 1. Письменний Є.М., Терех О.М., Рогачов В.А., Бурлей В.Д. Теплообмінна труба. //Патент на корисну модель. Україна. № 25025. Опубл. 25.07.2007. Бюл. №11.
- 2. Терех А.М. Теплообмен и аэродинамика поперечно-омываемых пучков труб с винтовым, подогнутым и сегментным оребрениями. Дис. ... канд.техн.наук.- Киев, 1997.- 160 с.
- Письменный Е.Н. Теплообмен и аэродинамика пакетов поперечно-оребренных труб.- Киев: Альтерпрес.- 2004.- 244 с.
- €.М.Письменний, П.І.Багрій, В.А.Рогачов, О.М.Терех Узагальнений метод розрахунку конвективного теплообміну поперечно-омиваних шахових пучків труб плоско-овального профілю з неповним оребренням//Восточно-Европейский журнал передовых технологий.-2008. - № 2/3 (32).- С. 44-47.
- 5. Стасюлявичюс Ю.К., Скринска А.Ю. Теплоотдача поперечно- обтекаемых пучков ребристых труб. Вильнюс:Минтис. 1974. 243 с.
- 6. Юдин В.Ф. Теплообмен поперечно-оребренных труб.- Л.: Машиностроение.- 1982.- 192 с.